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EXECUTIVE SUMMARY

This report describes the results of a computer simulation study to predict the temperature of the
glass at any location inside a DWPF canister during pouring and subsequent cooling. These
simulations are an integral part of a larger research focus aimed at developing methods to predict,
evaluate, and ultimately suppress nepheline formation in HLW glasses. That larger research
focus is centered on holistically understanding nepheline formation in HLW glass by exploring
the fundamental thermal and chemical driving forces for nepheline crystallization with respect to
realistic processing conditions. Through experimental work, the goal is to integrate nepheline
crystallization potential in HLW glass with processing capability to ultimately optimize waste
loading and throughput while maintaining an acceptable product with respect to durability.

The results of this study indicated severe temperature gradients and prolonged temperature dwell
times exist throughout different locations in the canister and that the time and temperatures that
HLW glass is subjected to during processing is a function of pour rate. The simulations indicate
that crystallization driving forces are not uniform throughout the glass volume in a DWPF (or
DWPF-like) canister and illustrate the importance of considering overall kinetics (chemical and
thermal driving forces) of nepheline formation when developing methods to predict and suppress
its formation in HLW glasses.

The intended path forward is to use the simulation data both as a driver for future experimental
work and, as an investigative tool for evaluating the impact of experimental results. Simulation
data will be used to develop laboratory experiments to more acutely evaluate nepheline formation
in HLW glass by incorporating the simulated temperatures throughout the canister into the
laboratory experiments. Concurrently, laboratory experiments will be performed to identify
nepheline crystallization potential in HLW glass as a function of time and temperature, the results
of which will be fed back into simulations to evaluate the potential impacts. Through an iterative
process involving computer simulations and experimental results, the potential for nepheline
crystallization in HLW glass can be predicted, evaluated, and suppressed to maximize waste
loading and throughput of canisters.
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1.0 Introduction

Currently, the Nepheline Discriminator (ND), a constraint developed by Pacific Northwest
National Laboratory (PNNL)' is used to prevent nepheline crystallization in HLW glass at the
Defense Waste Processing Facility (DWPF)>. The current ND is a purely compositional
constraint” although it is well known that crystallization in glasses is controlled by kinetics factors
as well. In glasses, the kinetic, or rates of mass transport, driving forces for crystallization can be
explained in reference to the glass transition region. Unlike crystalline materials which undergo
instantaneous” bulk crystallization upon cooling below the melting temperature, glasses undergo
what is termed a glass transition® in which the solidification occurs over a longer period of time
and temperature.® Therefore, glasses that are cooled at different rates will have different kinetic
driving forces for crystallization and thus different amounts of crystallization. This knowledge
was the basis for developing the canister centerline cooling (CCC) heat treatment test as part of
the waste form compliance plan.>* The CCC test is a laboratory crucible test in which glass is
heat treated according to a schedule intended to mimic a “worst-case” kinetic scenario based on
the slowest measured cooling rate.>” Indeed, it has been shown that kinetic effects exist and
impact the measured nepheline crystallization in HLW glass.® As a result, experimental studies at
SRNL are ongoing to understand the impact of kinetics on nepheline crystallization and to
develop improved methods of preventing nepheline crystallization in HLW glass during
processing.

Computer simulations have been performed as part of a larger motivation to holistically
understand nepheline formation in high-level-nuclear waste (HLW) glasses. The reason for this
is that in order to meet projected increased waste loadings in the future, particularly for waste
high in sodium and aluminum, the current nepheline constraint, the ND), will likely need to be
modified. In fact, projected waste loadings will likely not be achieved for the high Al-waste
streams to be vitrified at Hanford or Savannah River without modifying the current ND or
implementing a supplemental constraint. Therefore, Savannah River National Laboratory
(SRNL) has been researching methods and ways to better predict and limit nepheline
crystallization in HLW glass.

This report details computer simulations developed to model the temperatures of the glass within
a DWPF canister during filling and cooling. This research is focused on the kinetics of nepheline
crystallization and therefore the temperatures of the glass throughout the canister were of primary
importance. A realistic working computer model of the canister filling process was developed so
that changes to the process parameters (pour rate, heat flow, melt temperature, etc.) or glass
properties (density, viscosity, etc.) could be simulated, and the impacts to the glass temperatures
inside the canister identified, without actually or experimentally filling a canister. Ultimately, the
computer simulations will be used in two ways; (1) to drive future experiments for predicting
nepheline crystallization and (2) to investigate or identify those portions of the glass inside a
canister which are prone to nepheline crystallization given compositional and kinetic factors.

* Although the ND was developed based on glasses that were subjected to a variety of slow cooling profiles, the ND as
it is used/defined does not include (nor require) a cooling rate term.

° The transition is not actually instantaneous but, the kinetics is generally orders of magnitude faster compared to
glasses such that the liquid solidifies over an extremely small temperature range. In fact, it is now recognized that any
material can be frozen into a glassy state if cooled at a sufficiently fast rate.

° The glass transition is the range of temperatures over which the supercooled liquid remains liquid-like and its
viscosity increases as temperature decreases until the glass transition temperature where the viscosity is sufficiently
(~10" Pa-s) high that the glass becomes rigid.

4 In fact, it is now recognized that any material can be “frozen” into a glassy state if cooled at a sufficiently fast rate to
overcome the kinetics of mass transport.
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In order for (2) to be most beneficial, crystallization® studies are first needed to identify the time-
temperature (kinetic) conditions in which nepheline crystallization is most probable in HLW
glasses. The crystallization experiments will involve using thermal analysis measurements to
identify nucleation and crystal growth rates as a function of temperature.” Then, by comparing
the simulated temperatures of the glass in the canister to the temperatures at which nepheline
nucleation and crystal growth occurs, portions of the glass within the canister that are at increased
risk to nepheline crystallization can be identified. The simulations presented in this report are the
first step in developing a more robust and complete method for predicting nepheline
crystallization in HLW glass than currently available.

This study was performed for the Department of Energy (DOE) Office of Environmental
Management (EM) under the Technology Development and Deployment (TDD) Program Task
Plan EM-31 WP-5.1.2.% This report is intended to support the deliverable WP-512-SRNL-02 as
identified in the Task Plan.

* Crystallization refers to both nucleation and crystal growth, both of which are required for crystallization.

12
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2.0 Experimental

2.1 Model Development

The details of the computer model and its input parameters used to generate the data in this report
are described in detail in report SRNL-STI-2011-00209, Rev. 1. In brief, this model was
developed in part by using known thermal property data for nuclear waste glass and comparing
the model output temperatures to measured thermocouple data obtained during scale glass melter
(SGM) runs.>'’ In developing this model it was necessary that the glass pour rate be an
adjustable input parameter, however, because the thermal conductivity for a typical HLW glass
was not known, the heat conduction term in the model could not be developed from the thermal
equations alone. Instead, a flow rate calculation as the glass stream enters the glass pool inside
the canister was used to model the heat conduction as a function of radial distance from the center,
similar to that developed by Tennant.'" The heat conduction inputs were based on the initial
model simulations developed to fit experimental data.'” The model simulation and the
experimental data were in good agreement. The trends observed in the experimental data were
reproducible and the largest temperature difference between the simulation and experimental data
was ~40 °C. Although the model used in these simulations was developed to approximate the
heat flow, since it was developed from a single experimental data set'® there is little ability to
verify the accuracy of the simulations for the various pour rates. Additional SGM runs with
experimental thermocouple data exist in the literature for batch pours and continuous pours.*'
However, the batch pour data was not used in the model development because DWPF targets a
continuous pour. Additionally, the available historical data for continuously poured canisters was
generated using a narrow range in nominal pour rate (between 204 and 243 Ibs./hr.)*"
insufficient for comparison purposes. Nevertheless, because of how the model simulates heat
flow in the system, the overall trends seen in the data are thought to be accurate.

It should be understood that during processing the target pour rate of a given canister at DWPF
will fluctuate. In addition, it is common practice for DWPF to increase the pour rate as the
canister is nearly filled to lower the level in the melter in order to accommodate the incoming
feed and maintain and adequate level in the melter during the time it takes to replace the filled
canister with an empty canister.” The initial model development incorporated these flow rate
fluctuations into the simulation by extrapolating flow rates from the experimental data (based on
maximum thermocouple readings versus time) and increasing the pour rate for the last 100 Ibs. of
glass to be poured. For all of the experimental simulations in this study, the pour rate of the glass
into the canister was held constant (except where intentionally varied) to simplify comparisons
among simulations.

It is critical to recognize that the simulation operates by filling a canister along its centerline and
allowing the glass to flow radially outward to the inside edge of the canister. Therefore, the
centerline location reaches the highest temperature for a given height compared to the other radial
distances. Furthermore, if the additional heat added to the system from an infinitesimal height
increase in glass level” is negligible, then the maximum temperature of the centerline position at a
particular height corresponds to the point (and associated time) at which the glass level reaches
this height. Thus, the temperature of the glass at a particular height and radial position in the
canister can be traced as a function of time from when the glass fills to that particular height until
the end of the pour. By using this technique, the cooling curve profiles presented in this report
could be generated.

* The temperature of the bottom of the glass stream increases as the glass height in the canister increases since the
distance traveled is less.

13
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2.2 Test Simulations Selection & Development

All simulations were performed by M. R. Kesterson using COMSOL' software. Eleven
simulations were run in this study and they can be grouped into three categories; (1) continuous
constant pour rate, (2) continuous non-constant pour rate, and (3) non-continuous pour rate. A
‘baseline’ simulation was run with a 228 Ibs. of glass/hr. pour rate which, is equivalent to the
DWPF target of 400 canisters per year'’ assuming approximately 4000 Ibs. of glass per canister
and 80% attainment at DWPF. To match the experimental data, for all simulations the actual fill
height was approximately 92.1 inches which equated to approximately 3,656 pounds of glass.”

2.2.1 Continuous Constant Pour Rate

In addition to the baseline simulations, pour rates of 119 Ibs./hr., 328 Ibs./hr., and 470 lbs./hr.
were also simulated. The increased pour rates, relative to the baseline, were simulated in
anticipation of increased canister throughput goals. Although pour rates of 470 or 119 Ibs./hr. are
unlikely to be realized at DWPF, these simulations were meant to “bound” the anticipated pour
rates used during DWPF processing and thereby “bound” the temperatures and dwell times (at
temperatures) of the glass throughout the canister. These four simulations were performed to
mimic a continuously fed canister at a constant rate. Figure 2-1 schematically shows these fill
cycle profiles.
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0} 1500 o
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Figure 2-1. Fill cycles for constant pour rate simulations.

* Approximate density of 2.68 g/cc (167 lbs./ft}).
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2.2.2 Continuous Non-Constant Pour Rate

During actual processing the target pour rate for a given canister at DWPF will fluctuate.
Therefore, four simulations were performed to mimic either increasing or decreasing the pour rate
during the fill cycle with respect to the baseline. To facilitate comparison, the transition between
pour rates was at 50% of the fill height for all simulations. The following pour rate transitions
were simulated: 128 Ibs./hr.=>228 Ibs./hr., 228 1bs./hr.=> 128 1bs./hr., 228 1bs./hr.=>328 Ibs./hr.,
and 328 Ibs./hr.=>228 1bs./hr. These pour schedules are referred to as 128-228, 228-128, 228-328,
and 328-228 respectively and are shown graphically in Figure 2-1.
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Figure 2-2. Fill cycles for on-constant pour rate simulations.

2.2.3 Non-Continuous Pour Rate

In addition to pour rate fluctuations, real process delays or interruptions can and have occurred
when filling a given canister. To model these effects, three simulations were run in which filling
was stopped and restarted. Two of these simulations were meant to mimic a full pour stop lasting
one day (or long enough for the glass to cool to near room temperature). These simulations were
run at a nominal pour rate of 228 Ibs./hr. and the stops were initiated at 25% of the glass height in
one simulation and at 75% of the glass height in the other simulation. In both cases the fill cycle
was completed at the nominal 228 Ibs./hr. after the glass inside the canister had cooled to near
room temperature. These simulations are referred to in the text as “25/75” and “75/25”
respectively. The last simulation used a series of stops and restarts to the pour during the fill
cycle. In this simulation 100 Ibs. of glass was poured at a nominal 228 Ibs./hr. followed by a 60
minute hold. Immediately following the hold the same pour/hold sequence was repeated. In that
fashion a stepwise incremental pour was continued until the canister was filled. This simulation
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is referred to as “Step Flow (228/60)” in the text. Figure 2-3 schematically shows these non-
continuous fill cycle profiles.
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Figure 2-3. Fill cycles for non-continuous pour simulations

2.3 Data Output and Analysis

After running a simulation it was possible to extract the temperature of any location within the
canister. However, for simplicity, in this work, two types of data output were analyzed: (1) radial
temperature data and (2) temperature dwell charts.

2.3.1 Radial Temperature Data

The radial temperature data refers to six radial distances, 07, 17, 3”, 6, 97, and 12” within a
canister cross-section where the 0” location is the center of the canister and the 12” location is the
interface between the glass and the internal canister wall. The temperature of these six radial
distances, at five vertical heights, 157, 33”, 517, 69”7, and 87” were extracted from each
simulation as a function of time. All the radial distances and the 157, 51, and 87" vertical height
locations were chosen because those locations are identical to the thermocouple locations in the
experimental data.>'® The additional 33” and 69” vertical height locations were chosen because
they were midway points between the other vertical height locations. These locations are shown
schematically in Figure 2-4.
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92.1” (fill height)

87 Locations of
-—-- . =
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investigated in this study.
69”
*--0--0-9----
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B NV
9[/
6” ;
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*--0--0-Q----
15”
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Figure 2-4. Schematic of a canister cross-section with radial distances and vertical heights
investigated in this research labeled.

2.3.2 Temperature Dwell Charts

As previously mentioned, a focus of this research is to ultimately relate the simulated temperature
profiles to nucleation and crystallization kinetics as they relate to nepheline formation. To that
end, time-temperature dwell charts were generated with the intention of identifying locations
within the total glass volume in which the temperature remains at or near
nucleation/crystallization temperatures for extended periods of time. Previous literature has
shown that nepheline forms in HLW waste at temperatures as low as 600 °C and as high as
1100 °C.'"*'"" Therefore, the temperature regions chosen for analysis were 1100—1000 °C, 1000—
900 °C, 900-800 °C, 800—700 °C, and 700-600 °C. These charts display the total time that any
portion of the glass volume remained within a pre-determined temperature range. These charts
had the benefit of displaying the entire glass volume in one chart but, the charts had to be
generated during the simulations and therefore it was not possible to generate additional charts for
different temperature ranges post-simulation. The gradient time-temperature charts were
generated by the COMSOL software.'*
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3.0 Results and Discussion

3.1 Radial Temperature Data

To aid in interpreting the simulated radial temperature data it is helpful for the reader to recall
how the canister is filled in the simulations (see Section 2.1). In particular, the simulated
temperature at a given height and radial distance represents both the temperature of the air space
before the glass level reaches said height and, subsequently, the temperature of the glass after the
glass level has reached said height. In addition, for any simulation, the point in time at which the
glass reaches a specified height can be extrapolated from the simulation by finding the maximum
temperature at that height. By putting these two concepts together, it is trivial to separate the
temperature of the glass from the temperature of the air space in the simulation data.

Two sets of radial temperature data are provided. Each set is comprised of five individual plots
corresponding to the five vertical height locations (157, 337, 517, 697, and 87”) in the canister. In
cach one of those plots, the temperatures as a function of time for the six radial distances are
overlaid (07, 17, 37, 67, 97, and 12”). The first set, provided in Appendix A, shows the
temperature of the glass and the air space within the canister at any time during the simulations.
These plots are provided mostly for comparison purposes to show differences in simulation
durations and also to show the temperature differences within the canister (air space) for each
simulation. However, since the glass temperature was of primary interest, the second set of radial
temperature data is provided in Figure 3-1 through Figure 3-11 that shows only the temperature
of the glass. In this set, the same data (as shown in Appendix A) have been truncated along the
x-axes (time) so that the origin corresponds to the maximum temperature (extrapolated from the
simulation data as described above) of the centerline position at a given height or, more explicitly,
once the glass level has reached the specified canister height. In these plots, two common
characteristics are apparent.

First, the glass temperature, as a function of time, (cooling) was comparable for all the
simulations and exhibited three slope (rate) changes; an initial rapid cooling rate that transitioned
into a slower cooling rate before increasing again and transitioning into a cooling curve typical of
conduction in an infinite solid.'"® A notable exception to this observation was the Step Flow
(228/60) simulation however, this simulation also appeared to undergo similar cooling behavior
albeit with a ‘perturbed’ cooling rate.

18
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simulation, (glass temperature)
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Figure 3-6. Radial temperature
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Examination of the plots in Figure 3-1 through Figure 3-11 reveals that the maximum temperature
experienced by the glass, for a given height, occurs at the centerline and is reached at
approximately the same time for all radial positions except the 9 radial position. The 9 radial
position reaches its maximum in temperature after the maximum at the centerline (or other radial
positions) has been reached. This result is consistent with the experimental data used to develop
the model."’ The source of this time lag is thought to originate from the radial heat flow from the
center of the glass coupled with the heat loss to the canister wall. In effect, at the radial positions
closer to the centerline (17, 3”, and 6”), the heat flow from the centerline is rapid and dominates
the heat loss to the canister wall, whereas at the 12 radial position the heat loss to the canister
wall is rapid and dominates the heat conduction from the centerline. At the 9” radial position,
heat loss to the canister wall dominates initially, but as time elapses, the heat conduction from the
centerline surpasses the heat loss to the canister wall and an increase in the temperature is
observed.

This time-lag effect is observed in the experimental data'® and is a result of how the heat flow is
modeled in the simulations. To aid in visualizing this effect, Figure 3-12 shows the time at which
the maximum temperature is recorded as a function of radial position for the 228 Ibs./hr. pour rate
at the 51” height in the canister. This simulation actually indicated that the maximum time lag
occurred closer to 10.5” from the centerline. This result could not be compared to experimental
data as no data was found for radial distances between 9” and 12”. The exact profile of this time
lag is a function of the model parameters and without more experimental data to confirm the
model results it is unproductive to interpret this result beyond the general trend.
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Figure 3-12. Plot showing the time lag associated with the temperature of the glass as a
function of radial position. The point labels are the recorded temperatures (°C)
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In order to further understand the results, the simulation radial temperature data have been plotted
together according to radial position and height as shown in Figure 3-13 through Figure 3-18.
Each set of simulation data was shifted along the x-axis (time) so that x =0 on the plots
corresponds to the maxima in temperature for the given radial position of each simulation at the
specified height. Therefore, in these plots, the x-axis values represent the correct time scale but,
cannot be related to the time during the pour simulation.”

The plots in Figure 3-13 through Figure 3-18 indicate that the temperature of the glass as a
function of time exhibits three significant rate changes. In an attempt to semi-quantify the results,
linear regression was used to fit the data in three temperature regions corresponding to the rate
changes. The temperature regions chosen were T,.,,—850 °C, 850-750 °C, and 750-600 °C,
where Tp,x represents the maximum temperature for a particular radial position and canister
height. These temperature regions were chosen to encompass the slope changes. The fits to the
data are summarized in Table 3-1, which lists the slopes, in K/min, extrapolated from each
simulation.

Temperature, as a function of time, for the glass along the centerline was similar for most
simulations and exhibited three distinct slope transitions. Initially, the glass cooled rapidly at ~
0.8-1.2 K/min. from T,,,—850 °C after which, the rate decreased to ~ 0.3 K/min. from 850—
750 °C. Finally, the rate increased again to ~ 0.4 K/min. from 750-600 °C as the glass cooled
similarly to conduction in a solid. As the radial distance from the centerline increased, these
trends in cooling were still observed, but with diminishing similarity. In fact, at the 12” radial
position, the maximum temperature recorded for any simulation did not exceed 550 °C and the
cooling curves generally did not exhibit the initial changes in slope observed at the other radial
positions. Rather, the cooling curves exhibited what would be expected from a rigid solid body in
which heat flow is dominated by conduction.”

The significance of this result can be understood by examining the kinetics of the glass at the 12”
radial distance. At the 12” radial distance, the glass would be expected to be relatively rigid since
the glass transition temperature® (T,) for HLW glass is typically between 450 and 480 °C. Indeed,
the glass is quite rigid, as evidenced by its cooling profile in which minimal convective heat flow
is observed. Therefore, the glass at the 12” radial distance can be expected to have a reduced
driving force for crystallization compared to glass located closer to the centerline in which the
temperature is higher comparatively. As stated previously, surface crystallization appears to
dominate the nepheline crystallization observed in CCC treated samples in the laboratory.’
Whereas the CCC simulates the cooling profile of the glass at 517 along the centerline of the
filled canister, both the glass and crucible are heat treated together in the laboratory test. Thus,
the glass/crucible interface is exposed to the same temperatures as the centerline portion of the
glass in an actual canister; however, as shown in Figure 3-13 and Figure 3-18, the cooling profiles
of the glass at the canister centerline and at the canister inside wall vary significantly. The
simulation data suggest nepheline crystallization rates should be lower at the surface than at the
centerline, whereas the CCC crucible test indicates that crystallization rates are greater at the
surface than at the centerline. Based on this result, it appears that the current CCC crucible test
may be conservative with respect to crystallization at the glass/canister interface. The

* In effect, the plots in Figure 3-1 through Figure 3-11 have been overlaid and displayed on a common value time axis.

® For the present purposes, a solid body can be thought of as a crystalline solid (such as a metal) in which convective
(kinetic) heat flow does not occur.

° The Tg refers to the approximate temperature that supercooled liquid converts to a solid upon cooling or vice versa.
In actuality the conversion does not happen at a specific temperature (like typically assumed in crystalline materials)
but rather occurs over a range of temperatures or, the glass transition range.

4 The same can be said of the glass/air interface, though the magnitudes may not be equivalent.
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simulations have demonstrated that the glass at the surface of the canister will never experience
the same temperatures as the glass at the centerline and it appears that the CCC crucible test
induces nepheline crystallization by increasing the kinetic (thermal) driving force for
crystallization at the glass/crucible interface.

In general, the radial temperature data indicate that the pour schedule for a DWPF canister has
little effect on the general trends (slopes) of the cooling curve with respect to the HLW glass.
Nevertheless, adjustments to the pour schedule by way of increasing or decreasing the pour rate
or intermittently pouring the glass can significantly affect the time duration at which the glass
cools at a given rate. Indeed, this effect was observed to an extent in the limited pour rate data
from the SGM runs.>"?
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Table 3-1. Glass cooling rates (K/min.) for three temperature regions estimated from best-fit linear regression.

Canister Height 15" 33" 51" 69" 87"
Radial Position 0" 1" 3" &' 9" 12" 0" 1" 3" 6" 9" 12" 0" 1" 3" & 9" 12 0" 1" 3" & 9" 12" 0" 1" 3" 6" 9" 12
119 Ibs./hr. R e e - - - - - - -06-06-07-10 - - -08-08-09-09 - -
228 1bs./hr. -07 -07 -08-1.2 - - -10-09-1.1-13 - - -11-10-11-13 - - -11-11-12-13 - - -16-16-17 -16 - -
© 3281bs./hr. -1.0 -10 -1.0 -1.4 - - -1.2-12-13-15 - - -13-13-13-14 - - -13-13-14-15 - - -20-22-21-20 - -
9 4701bs /hr. -13-13-14-17 - - -13-14-14-15 - - -14-14-15-16 - - -14-14-15-15 - - -22-24-24-24 - -
® 328228 Ibs./hr. -1.0-10-11-15 - - -13-13-13-15 - - -12-11-12-14 - - -11-11-12-13 - - -16-17-17-16 - -
g 228-128Ibs./hr. -07 -07 -08-1.2 - - -10-10-11-13 - - -09-07-07-15 - - -06-06-07-1.0 - - -09-09-09-10 - -
F 2283281bs /hr. -07 -07 -08-13 - - -10-1.0-1.1-13 - - -13-13-13-1.7 - - -14-13-14-15 - - -20-21-22-20 - -
128-228 Ibs./hr. - - - - - - - - - - - - 09-09-10-11 - - -12-11-12-13 - - -17-17-17-16 - -
2281bs./hr.; 25/75 Hold -0.7 -0.7 -0.8 -1.2. - - -11-11-11-15 - - -11-10-1.1-13 - - -11-11-12-13 - - -16-17-17 -16 - -
2281bs./hr.; 75/25 Hold -0.7 -0.7 -0.8 -1.2 - - -10-10-10-13 - - -11-10-11-13 - - -26-28-29-3.0 - - -16-17-17-16 - -
StepFlow: (228/60) - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Canister Height 15" 33" 51" 69" 87"
Radial Position 0" 1" 3" &' 9" 12" 0" 1" 3" 6" 9" 12" 0" 1" 3" &' 9" 12" 0" 1" 3" & 9" 12" 0" 1" 3" 6" 9" 12
119 Ibs./hr. - - - - - - - - - - - - 03 - -03-05 - - -03-03-03-04 - - -06-06-07-06 - -
228 1bs./hr. -0.3 -03 -04 -05 -0.5 - -03-03-03-04-06 - -03-03-03-05-06 - -03-03-03-04-06 - -06-06-06-08-08 -
o 328lIbs./hr. -0.3 -03 -04 -05 -0.7 - -03-03-03-05-07 - -03-03-03-05-07 - -03-03-03-05-07 - -0.6-06-0.6-07 -09 -
8 4701bs./hr. -0.3 -03 -04 -05 -0.8 - -03-03-03-05-07 - -03-03-03-05-07 - -03-03-03-05-07 - -05-05-06-07-1.0 -
™ 328-2281bs./hr. -0.3 -03 -04 -05 -0.6 - -03-03 -03-05-06 - -03-03-03-05-06 - -03-03-03-05-06 - -0.6-06-06-08-0.7 -
2 228-1281bs./hr. -0.3 -03 -04 -05 -0.5 - -03-03 -03 -04-06 - -03-03-03-04-07 - -03-03-03-04-04 - -06-06-06-08-05 -
® 228328 Ibs /hr. -0.3 -03 -04 -05 -04 - -03-03-03-04-06 - -03-03-03-05 - - -03-03-03-05-07 - -06-06-06-07-09 -
128-228 Ibs./hr. 02-02-02 - - - - -02-02-05 - - - -03-04-05 - - -03-03-03-04-06 - -06-06-06-08-08 -
2281bs./hr.; 25/75 Hold -0.4 -0.4 -0.4 -0.5 -0.5 - -0.3 -0.3 -0.4 -0.5 -0.7 - -03 -03 -0.3 -04 -06 - -03-03 -0.3 -04 -0.6 - -0.6 -0.6 -0.6 -0.8 -0.7 -
2281bs./hr.; 75/25 Hold -0.3 -0.3 -0.4 -0.5 -0.5 -  -0.3 -0.3 -0.3 -0.4 -06 - -03 -03 -03 -04 -06 - -0.9 -0.9 -0.9 -1.0 -14 - -0.6 -0.6 -0.6 -0.8 -0.7 -
StepFlow: (228/60) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Canister Height 15" 33" 51" 69" 87"
Radial Position 0" 1" 3" &' 9" 12" 0" 1" 3" 6" 9" 12" 0" 1" 3" " 9" 12" 0" 1" 3" & 9" 12" 0" 1" 3" §" 9" 12
119 Ibs./hr. -0.4 -0.4 -0.5 -0.9 - - -04-04-04-06 - - -04-04-04-06 - - -04-04-04-06 - - -06-06-07-09-07 -
228 1bs./hr. -0.4 -04 -04 0.6 -1.1 - -04 -0.4 -0.4 -06 -11 - -04 -04 -04 -06 -1.0 - -04-04 -04 -06-1.1 - -06-06-0.7 -09 -1.6 -
O 3281bs./hr. 04 -04 -04 0.6 -1.1 - -04 -04 -04 -06 -11 - -04 -04 -04 -06 -1.0 - -04-04 -04 -06 -1.1 - -0.6 -06 -0.7 -09 -1.6 -
S 4701bs./hr. -0.4 -04 -04 -0.6 -1.2 - -04 -0.4 -04 -06 -11 - -04 -04 -04 -06 -1.0 - -04-04 -04 -06-1.1 - -05-06-0.7 -09 -1.6 -
© 328228 Ibs./hr. 0.4 -04 -04 0.6 -1.1 - -04 -04 -04 -06 -11 - -04 -04 -04 -06 -1.0 - -04-04 -04 -06 -1.1 - -0.6-06-0.7 -09 -1.6 -
@ 228-1281bs./hr. -0.4 -04 -04 0.6 -1.1 - -04 -0.4 -0.4 -06 -1.1 - -04 -04 -04 -06 -1.0 - -04 -04 -04 -06 -09 - -06-06-0.7 -09 -15 -
™ 2283281bs /hr. 0.4 -04 -04 -0.6 -1.0 - -04 -04 -04 -06 -11 - -04 -04 -04 -06 -1.0 - -04-04 -04 -06 -1.1 - -0.6 -06 -0.7 -09 -1.6 -
128-228 Ibs./hr. -04 -04 -04 07 - - -04-04-04-06 - - -04-04-04-06-10 - -04-04-04-06-1.1 - -06-06-0.7-09-16 -
2281bs./hr.; 25/75 Hold -0.4 -0.5 -0.5 -0.6 -1.1 -  -0.4 -0.4 -0.4 -0.6 -12 - -0.4 -0.4 -0.4 -06 -1.0 - -04 -04 -04 -0.6 -11 - -0.6 -0.6 -0.7 -09 -1.6 -
2281bs./hr.; 75/25 Hold -0.4 -0.4 -0.4 -0.6 -1.1 -  -0.4 -0.4 -0.4 -0.6 -1.1 - -0.4 -0.4 -04 -06 -1.0 - -1.0-1.0 -1.0 -1.2 -1.7 - -0.6 -0.6 -0.7 -09 -1.6 -
StepFlow: (228/60) - - - - - - - - - - - - -04-04-04-06 - - 04-04-04-06 - - - - -07-09 - -
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Figure 3-14. Composite 1” radial
temperature data plots.

Notes:

(DThe data has been shifted in the x-axis
so that the values are the absolute time
and do not correspond to time during the
simulation.

@For the 25% and 75% data, “(Post)”
indicates the data is taken from after the
hold time elapsed.
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Figure 3-15. Composite 3” radial
temperature data plots.
Notes:

(DThe data has been shifted in the x-axis
so that the values are the absolute time and
do not correspond to time during the
simulation.

@For the 25% and 75% data, “(Post)”
indicates the data is taken from after the
hold time elapsed.
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Figure 3-16. Composite 6” radial
temperature data plots.
Notes:

(DThe data has been shifted in the x-axis
so that the values are the absolute time
and do not correspond to time during the
simulation.

@For the 25% and 75% data, “(Post)”
indicates the data is taken from after the
hold time elapsed.
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Figure 3-17. Composite 9” radial
temperature data plots.

Notes:

(DThe data has been shifted in the x-axis
so that the values are the absolute time
and do not correspond to time during the
simulation.

@For the 25% and 75% data, “(Post)”
indicates the data is taken from after the
hold time elapsed.
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Figure 3-18. Composite 12” (surface)
radial temperature data plots.

Notes:

(DThe data has been shifted in the x-axis
so that the values are the absolute time
and do not correspond to time during the
simulation.

@For the 25% and 75% data, “(Post)”
indicates the data is taken from after the
hold time elapsed.
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3.2 Temperature Dwell Charts

Another goal of this research was to identify areas within a HLW glass filled canister that may be
at increased probability of crystallization due to kinetic effects. Assuming that nepheline
crystallization increases with the time that the glass remains at nucleation and growth
temperatures, temperature dwell charts are useful in identifying such crystallization prone areas
within a HLW glass filled canister. The temperature dwell charts generated from the simulations
are shown in Figure 3-19 through Figure 3-29. As described previously, the temperature dwell
charts contain temperature data about the entire volume of the glass. The radial temperature data
discussed beforehand (Section 3.1) are embedded in the temperature dwell charts even if not
clearly apparent to the eye. As such, this discussion will focus on the additional and
complementary information provided by these charts compared to the radial temperature data. In
interpreting the temperature dwell charts it is critical to recall that the time duration of the pour is
compressed (lost) in these charts; instead, they represent the total elapsed time any portion of the
glass remained within the specified temperature range.

Table 3-2 summarizes the maximum temperature dwell time results. For all simulations, on
average, portions of the glass spent nearly 400 minutes within the 700 °C-800 °C temperature
range, the longest time of any of the experimental temperature regions. Portions of the glass
remained for the least amount of time within the 1100 °C-900 °C temperature range and, on
average the glass remained above 1000 °C for 30% of that time. In most simulations, the glass
remained between 700 °C—600 °C or for a longer period of time than between 900 °C—800 °C.
These results are consistent with the cooling profiles described earlier in which multiple rate
changes are observed during the total cooling time. In the study simulations, the time that any
portion of the glass remained within 600 °C-700 °C, 700 °C-800 °C, 800 °C-900 °C, 900 °C—
1000 °C, or 1000 °C—-1100 °C could be changed by 71, 94, 134, 60, or 45 minutes respectively by
adjusting the pour rate. These results suggest that the pour rate can significantly impact the
resultant temperatures and time that portions of HLW glass in DWPF canisters might be exposed
to and it is important to understand the impact that changes to the pour rate have on the tendency
to form nepheline.

Table 3-2. Summary of time-temperature dwell data from simulations.

Time (minutes)

Simulation
600-700 °C 700-800 °C 800-900 °C  900-1000 °C 1000-1100 °C
119 lbs./hr. 325.0 403.3 227.4 101.1 119
228 Ibs./hr. 254.2 378.4 203.4 101.0 48.6
328 Ibs./hr. 254.1 381.2 172.2 93.7 52.5
470 lbs./hr. 255.3 383.6 167.5 79.6 56.7
328-228 Ibs./hr. 254.8 381.6 180.5 89.8 46.5
228-128 lbs./hr. 258.5 388.4 260.1 120.9 26.2
228-328 lbs./hr. 257.2 381.5 1984 95.7 49.7
128-228 Ibs./hr. 256.9 407.1 265.3 84.3 48.0
228 Ibs./hr.; 25/75 Hold 304 378.5 201.8 99.3 48.5
228 Ibs./hr.; 75/25 Hold 317.7 378.0 203.4 101.0 48.6
StepFlow: (228/60) 277 472.3 301.1 60.5 23.8
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Although the maximum dwell times shown in Table 3-2 indicate extremes, they alone do not
indicate the total volume or, location within the canister of the glass at said temperature. Non-
uniform temperatures within the canister could result in non-uniform crystallization. In general,
‘hot spots’ (areas of the glass that remained at an elevated temperature relative to their immediate
surroundings) and radial or vertical temperature gradients (as a function of dwell time) within the
canister will contribute to non-uniform dwell times of the glass within the canister. Note that
color gradients in the charts represent a gradient in time (again, the time duration is compressed)
within the specified temperature region.

Hot spots between 900—-1000 °C were observed approximately 13” from the canister bottom in
the 470 Ibs./hr. simulation and approximately 18” from the canister bottom in the 328 1bs./hr. and
328->228 Ibs./hr. simulations. Hot spots were observed between 900-1000 °C approximately
42” from the canister bottom in the 228 1bs./hr., 75/25, 25/75, and step flow (228/60) simulations.
Hot spots were also observed at approximately 10” between 800-900 °C in the 228 Ibs./hr.,
2282128 1bs./hr., 2282328 1bs./hr., 25/75, and 75/25 simulations. Additional hot spots occurred
in the 119 Ibs./hr. simulation at approximately 107, 42”, 62, and 90” between 600—700 °C, 700—
800 °C, 800-900 °C, and 900—-1000 °C respectively.

Vertical and radial gradients were observed between the 900-1000 °C and 1000-1100 °C
temperature regions in all the simulations, consistent with the previously discussed cooling
profiles in section 3.1. In contrast, the 600-700 °C and 700-800 °C temperature regions
exhibited vertical and radial gradients near the top and bottom of the canister but, only a radial
gradient in the central part of the canister. The portion exhibiting no vertical gradient was
estimated to occur between approximately 13 and 80” indicating that within this region the full
radial cross section in the canister exhibited relatively constant heat flow as a function of time. In
many of the simulations exhibiting radial gradients, the longest dwell times (for a given
temperature region) occurred about the centerline as expected. This result was observed in the
228 lbs./hr. pour simulation and is fundamentally the basis for the current CCC. The most-
uniform dwell time for the largest volumes of glass appeared to occur between 800 and 900 °C in
most simulations as evidenced by the minimal gradients in those charts. Comparison of vertical
and radial gradients indicates that the non-continuous simulations exhibited markedly similar
behavior compared to the baseline albeit with clear discontinuities related to the simulation
parameters.

To illustrate the effect of these temperature dwells, consider the baseline 228 1bs./hr. simulation
dwell temperature charts shown in Figure 3-20. The maximum time that any portion of the glass
remained between 800 and 900 °C was ~203 minutes. However, this portion of glass was a small
portion (hot spot) of the entire glass volume. The majority of the glass volume appeared to
remain between 800 and 900 °C for closer to ~ 160 minutes. Indeed, crystallization kinetics at
the centerline compared to the surface of the canister may be significantly different. The various
simulated temperature dwell times and associated locations indicate that the pour schedule can
affect the heat flow in different parts of the canister in different ways.
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Simulation: 119 Ibs./hr. Pour
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Figure 3-19. Temperature dwell charts for 119 lbs./hr. simulation. Color represents the total time that portion of the glass was between the
temperatures specified at the bottom of each chart. Scale ~25:1
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Simulation: 228 Ibs./hr. Pour
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Figure 3-20. Temperature dwell charts for 228 lbs./hr. simulation. Color represents the total time that portion of the glass was between the
temperatures specified at the bottom of each chart. Scale ~25:1
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Simulation: 328 Ibs./hr. Pour
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Figure 3-21. Temperature dwell charts for 328 lbs./hr. simulation. Color represents the total time that portion of the glass was between the
temperatures specified at the bottom of each chart. Scale ~25:1
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Simulation: 470 Ibs./hr. Pour
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Figure 3-22. Temperature dwell charts for 470 lbs./hr. simulation. Color represents the total time that portion of the glass was between the
temperatures specified at the bottom of each chart. Scale ~25:1
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Simulation: 25/75 with 24 Hour Process Delay
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Figure 3-23. Temperature dwell charts for 25/75 with 24 hr. Process Delay simulation. Color represents the total time that portion of the
glass was between the temperatures specified at the bottom of each chart. Scale ~25:1
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Simulation: 75/25 with 24 Hour Process Delay
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Figure 3-24. Temperature dwell charts for 75/25 with 24 hr. process delay simulation. Color represents the total time that portion of the
glass was between the temperatures specified at the bottom of each chart. Scale ~25:1
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Simulation: 100 Ibs. Step Flow w/ 60 Minute Hold Between Pours
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Figure 3-25. Temperature dwell charts for step flow with 100lbs./ 60 min. hold simulation. Color represents the total time that portion of the
glass was between the temperatures specified at the bottom of each chart. Scale ~25:11
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Simulation: 328-228 lbs./hr. Pour
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Figure 3-26. Temperature dwell charts for 328-228 Ibs./hr. simulation. Color represents the total time that portion of the glass was between
the temperatures specified at the bottom of each chart. Scale ~ 25:1
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Simulation; 228-128 Ibs./hr. Pour
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Figure 3-27. Temperature dwell charts for 228-128 Ibs./hr. simulation. Color represents the total time that portion of the glass was between
the temperatures specified at the bottom of each chart. Scale ~25:11
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Simulation; 228-328 Ibs./hr. Pour
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Figure 3-28. Temperature dwell charts for 228-328 Ibs./hr. simulation. Color represents the total time that portion of the glass was between
the temperatures specified at the bottom of each chart. Scale ~25:11
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Simulation; 128-228 Ibs./hr. Pour
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Figure 3-29. Temperature dwell charts for 128-228 Ibs./hr. simulation. Color represents the total time that portion of the glass was between

the temperatures specified at the bottom of each chart. Scale ~25:11
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4.0 Summary

The study described here provided computer simulation data to supplement and advance the
current understanding of, and ability to better predict, nepheline crystallization in HLW glasses.
Results of the simulations indicate the pour rate can significantly impact the resultant
temperatures and time that portions of HLW glass in DWPF canisters might be exposed to.
Moreover, the simulations indicate that crystallization kinetics should not be expected to be
uniform throughout the glass volume in a DWPF (or DWPF-like) canister and the simulations
provide further evidence to the importance of considering the kinetics of nepheline formation
when developing methods to predict and suppress its formation. To this point in particular, the
CCC crucible test is thought to be conservative with respect to predicting nepheline formation.
To elaborate, thermal (temperature) and chemical (interfacial) potentials will affect crystallization
kinetics and therefore glass located at the center of the canister will have a different
crystallization potential compared to that of glass located at the inside wall. Indeed, the CCC
crucible test appears to artificially induce crystallization at the glass/crucible interface® due to the
increased chemical driving force for crystallization at the surface compared to the center of the
glass sample.” The implication is that nepheline crystallization is more likely to occur at the
interface than in the bulk glass. However, during processing of a DWPF canister, the cooling
temperatures of the glass at the inside surface of the canister is significantly less compared to the
glass at the interior (centerline) of the canister. It follows that the CCC crucible test would be
conservative with respect to nepheline crystallization since the thermal driving force for
crystallization would be larger than in an actual canister at the surface.®

The simulation results contain a tremendous amount of information useful in processing HLW
glass that can be tailored to specific purposes for future studies. The glass properties, canister
geometries, process parameters, etc. can be modified and simulations produced to evaluate the
impact to the glass without actually filling a canister. Additionally, the simulations can be used
as an investigative tool to easily and efficiently identify critical temperatures and cooling rates.
In particular, experimental studies can be performed to identify the temperature regions in which
nepheline crystallizes in HLW glass and then a simulation can be performed to rigorously identify
or search for locations within the canister that are at increased risk. Subsequently, the simulation
results can be used to develop precise laboratory tests to optimize glass formulations and
processing parameters to avoid nepheline crystallization. Although the focus of this research is to
gain a complete understanding of nepheline crystallization in HLW glass, the simulations need
not be restricted in that sense. Indeed, other types of crystallization could be explored in similar
ways.

* Similarly, the glass/air interface appears to lower the crystallization potential.

® The thermal driving force for crystallization is the same since the entire sample and crucible are exposed to the same
cooling profile.

It is possible that some glasses will not behave as described here, i.e. the interfacial driving forces may not be
significantly different form the bulk driving forces. Also, the canister material is stainless steel and the CCC test is
performed in Pt/Au alloy crucibles and interfacial effects may be different for different materials.

dSince the rates (as a function of temperature) of nepheline crystallization are not known this argument must be
understood with caution. This argument does not suggest or imply the magnitude of crystallization potential. That is to
say, a glass exposed to an alternative crucible test that utilized a surface cooling profile might still exhibit interface
(glass/surface) crystallization. However, if interface crystallization was measured, the amount would be expected to be
less than that compared to a glass exposed to the traditional CCC crucible test.
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5.0 Path Forward

This research enforces the need to understand nepheline kinetics to optimize nepheline tolerance
in HLW glasses. Nevertheless, further research is needed to holistically understand nepheline
formation in HLW glasses. Three areas of focused research are suggested:

1)

2)

3)

Glass-surface interface effects—It has been shown that nepheline crystallization in HLW
glass is dominated by surface/interface crystallization in the CCC crucible test.® The
CCC test is currently performed in Pt/Au alloy crucibles. Experiments to determine the
effect of different materials, specifically the canister material, on crystallization should be
performed.

Nepheline nucleation and crystallization—The nucleation and crystal growth rates as a
function of temperature need to be experimentally determined for typical HLW glass
compositions in order to develop alternative methods to avoid crystallization.

Laboratory crucible tests—It now seems apparent given the data to date, that the current
CCC crucible test is likely conservative. Experimental work should focus on developing
laboratory tests to more accurately mimic the cooling profile of the glass in canister that
is at most risk to nepheline crystallization.

It is vital to communicate to the reader that the preceding recommendations are interdependent
and need to be addressed collectively in order to draw appropriate conclusions. Subsequently, a
determination can be made whether the ND as implemented has been overly conservative. Then
the use of the CCC and the waste compliance strategy can be modified as necessary.
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Figure A-11. Radial
Temperature Data for
StepFlow (228/60) Simulation,
(Full Simulation) Note: the
centerline data has been removed
for clarity.
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